August 23, 2007 (ScienceDaily.com) – Hybrid electric cars need much better batteries–and A123, a plucky Massachusetts startup, says it’s got them.

Although the lithium-ion cells you see in laptops and mobile phones pack twice as much energy per pound as the next-best kind, they haven’t found their way into hybrid cars because they’re worryingly prone to fires. A123, a Watertown, Mass. startup, believes it has solved the problem with a lithium-ion design using a special formulation for the battery’s cathode, or positive plate.

On August 9, General Motors announced that it would use A123’s batteries to turn the Chevrolet Volt, now a concept car, into what is known as a plug-in hybrid. The plug-in constitutes a kind of automotive holy grail because it would give priority to the electric part of the gasoline-electric hybrid. A plug-in would go considerable distances on battery power alone, usually gaining its charge straight from a wall socket and relying on the gasoline engine only as a range extender. Automakers around the world are hot on the trail of the energy-dense batteries such cars would require.

More… (source)

August 24, 2007 (Cardiff University) – Cardiff scientists exploring the safe storage of hydrogen to power vehicles as an environmentally friendly alternative to petrol have made a promising new discovery.

Having already developed an organic polymer capable of storing 1.7 per cent hydrogen by weight, Professors Neil McKeown from the School of Chemistry together with Peter Budd of the University of Manchester and David Book from the University of Birmingham can now report the creation of an organic polymer able to store around three per cent hydrogen by weight…

In order to make hydrogen a viable alternative to petrol, a material which can store hydrogen at a weight of over six per cent is required. This figure is estimated by the American Department of Energy as the minimum required to make a fuel tank for hydrogen to power a vehicle for 300 miles…

More… (source)

August 23, 2007 (PhysOrg.com) – Sony today announced the development of a bio battery that generates electricity from carbohydrates (sugar) utilizing enzymes as its catalyst, through the application of power generation principles found in living organisms.

Test cells of this bio battery have achieved power output of 50 mW, currently the world’s highest level for passive-type bio batteries. The output of these test cells is sufficient to power music play back on a memory-type Walkman…

The bio battery does not require mixing, or the convection of glucose solution or air; as it is a passive-type battery, it works simply by supplying sugar solution into the battery unit. The cubic (39 mm along each edge) cell produces 50 mW, representing the world’s highest power output among passive-type bio batteries of comparable volume. By connecting four cubic cells, it is possible to power a memory-type Walkman (NW-E407) together with a pair of passive-type speakers (no external power source). The bio battery casing is made of vegetable-based plastic (polylactate), and designed in the image of a biological cell.

More… (source)

Advertisements